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Abstract-The problem ofa cylindrical shell subject to local loads over an arbitrary shaped base is
being analysed. Governing equations for the cylindrical shell are solved by the double Fourier series
expansion technique, yielding solutions for stresses and displacements in terms of Fourier load
coefficients. The load coefficients are double integral functions, which have variable integral limits
when the load has a non-rectangular base profile. To evaluate the load coefficients, two methods
are studied. In the first method, the discrete Fourier approximation technique is employed. In the
second method, the double integral expression is converted into a boundary line integral by means
of Green's Theorem. For a boundary with no analytical expression, it can be approximated by a
series of line segments and integration is carried out along each line segment. The numerical
integration is accomplished by the Clenshaw-Curtis quadrature rule. The boundary integral method
is simpler and easier to implement in the computer than the discrete Fourier approximation method.
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axial length of rectangular patch load
circumferential width of patch load
Young's modulus of elasticity
t

2/12r 2

length of cylinder
moment stress resultants
direct stress resultants
number of segments used to approximate a closed curve
Fourier harmonic numbers associated with axial and circumferential directions, respectively
load coefficients in P,(x, q,) which is expressed in Fourier series
radial load, axial moment and circumferential moment, respectively
normal (radial) load distribution function
load intensities
mean radius of cylinder
dummy parameter in the mapping function
thickness of cylinder
axial, tangential and radial displacements, respectively
mnr/L
Poisson's ratio
axial and circumferential stresses, respectively
cylindrical coordinate system
transformed coordinate system

I. INTRODUCTION

Cylindrical shell structures are subjected to a variety of local loads. These loads are often
transmitted to the shells through nozzles, piping connections and welded attachments such
as brackets and supports. While the cross-sections of nozzles and pipes are circular, welded
attachments may be rectangular, circular, elliptical or have I, T, L or other shapes. In
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addition, the applied load on the attachment may be an axial force, a moment or both. To
find the deflection and stress distributions associated with such a complex geometry and
loading condition, it is necessary to express the loading and geometric details of the
attachment as mathematical functions so as to facilitate a theoretical analysis of the
problem.

The sets of governing equations for the cylindrical shell are often expressed in terms
of load and displacement functions. In this work, the set of thin-walled cylindrical shell
equations due to Sanders (1959) will be employed. Sanders' shell theory was derived via
the variational principle of virtual work. It has received widespread use in recent years and
is regarded by many as being the best within its class.

If only the normal radial loads on the cylinder are considered, then the cylindrical shell
equations for displacements (u, D, w) can be written in the following form:

(1)

where the L values are the differential operators of Sanders' shell theory.
A particular solution of these equations for a cylindrical shell under radial load and

simply supported at the ends can be solved by the double Fourier series expansion technique
[for example, in the papers of Bijlaard (1955), Duthie et al. (1982) and Ong (1987)]. The
forms of the Fourier series are chosen so that the boundary conditions are identically
satisfied. In this approach, the known loading distribution is expressed in terms of Fourier
series in which the Fourier coefficients can be determined by simple formulae. The unknown
displacements are also expressed in terms of double Fourier series and their coefficients can
be found, in terms of loading coefficient, by solving the shell equations.

The double Fourier series for a distributed radial load (Pr) acting on the cylindrical
surface can be expressed as follows:

(2)

Substituting eqn (2) into eqn (1), solutions for the displacements can be determined as
follows:

,2 """" (mnx)
u = kA m~1 n~o Z2mn (Prnn cos n¢ + P;'rn sin n¢) cos L

(3)

where

Zlmn = ().2+ n2)2/DEN

Z2mn = _,{n2(,P+n 2) I~V -}h+n2}DEN
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(4)

By the strain and curvature relationships of Sanders, the following stress and moment
resultants can be obtained:

00 00

M¢ = r2 I L [(n 2 +v,F)Zlmn +nZ3mn]G(m, n, x, ¢)
m= 1 n=O

where

00 00

M x = r2 L I [(vn 2 +,F)Zl mn +vnZ3mn]G(m, n, x, ¢),
m=ln=Q

(
mnx)G(m, n, x, ¢) = (Pmncosn¢+P'",n sinn¢) sin L .

(5)

Finally, based on these stress and moment resultants, stresses on the outer and inner
surfaces of the shell can be calculated as follows:

Nx 6Mxax = - +-- (+outside, - inside)
[ - [2

N¢ 6M¢
a = - +-- (+ outside, - inside).

¢ [- [2
(6)

The aforementioned method of solution is plausible as all solutions can be expressed in
series forms and their numerical solution values can be attained by series summation.
Furthermore, all solutions can be summed once the load coefficients Pmn and P'",n are
evaluated. Since the applied loads on the shell are known, its associated Fourier coefficients
should be able to be determined.

The object of this paper is to search for an efficient method for evaluating the load
coefficients Pmn and P'",n for a surface radial loading applied on an arbitrarily shaped area.
Two methods are proposed for the evaluation ofload coefficients; their versatility, strengths
and weaknesses will be discussed.

2. REPRESENTING LOADING DISTRIBUTION BY FOURIER SERIES

The general expression for the load coefficients Pmn and P'",n can be derived directly
from eqn (2), through the use of orthogonal relationships for sine and cosine functions, as
follows:

1 rL rh
(mnx)Pmn = LnJo Jo Pr(x,¢)sin L d¢'dx (m = 1,2,3, ... ,n = 0)

2 rL rh

(mnx)= LnJo Jo Pr(x,¢)cosn¢sin L d¢'dx (m,n = 1,2,3, ... )

(7a)

(7b)
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Fig. I. Local loads with different base profiles.

2 rL r2n

(mnx)P'",n = LnJo Jo Pr(x,¢)sinn¢sin L d¢'dx (m,n = 1,2,3, ... ). (7c)

For applied loads applied on a rectangular area, the integrals of eqns (7) are in a standard
form and can be evaluated easily. As an example, the closed form expressions for Pmn and
P'",n for a load located at (xo, ¢o) and of uniform intensity "q" acting over a rectangular
area of axial length "2a" and width "2c", as shown in Fig. 1, are as follows:

Pr(x, ¢) = q in the region (¢o - ; ~ ¢ ~ ¢o + ;, Xo - a ~ x ~ Xo +a) (8a)

4qc (mnxo) (mna)Pmn = --sin -- sin -~

mn2 r L L
(m = 1,2,3, ... ,n = 0)

8q (mnxo) (mna) (nc)= mnn2 sin ~ sin Leos n¢o sin -; (m, n = 1,2, 3, ... )

(m,n = 1,2,3, ... ).

(8b)

(8c)

For the general case of a load acting over an arbitrarily shaped area, the integral limits of
eqns (7) are variables, which means that the integrals cannot be evaluated in a direct
manner. Two methods are described in the following to evaluate the double integrals in
eqns (7).

2.1. Method I-discrete Fourier approximation
The load coefficients in eqn (2) can be evaluated without errors as follows:

2 M N (mnx.)
Pmn = MN L: L: Pr(x;, ¢) sin -LI

l~ I j= I

(for m ~ 1, n = 0) (9a)

where

(form, n ~ 1)

(for m, n ~ 1),

(9b)

(9c)
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In the foregoing equations, the integration domain [0 ~ x ~ L, 0 ~ ¢ ~ 2n] is divided
into M divisions in the x-direction and N divisions in the circumferential direction. The
maximum number of Fourier harmonics that can be evaluated accurately by this technique
is equal to half the number of divisions.

The discrete Fourier approximation method is in fact equivalent to applying the simple
trapezoidal rule to the double integrals of eqns (7). The trapezoidal rule has been shown to
be highly accurate for Fourier series. The discrete Fourier approximation technique is a
general technique and can handle any force distribution. However, it is quite an inefficient
and tedious method unless Fast Fourier Transform can be appropriately employed. The
method requires values of Pr(x, ¢) at all collocation points and double summation has to
be performed for each Fourier coefficient. A great deal of computational effort is needed
and thus it is not the preferred choice.

2.2. Method II-contour line integral
The double integrals of eqns (7) can be transformed into line integrals by means of

Green's theorem. For the convenience of expressing the integral results, the integrands in
eqns (7a--e) are defined as follows.

Let

12 (x, ¢) = Pr(x, ¢) sin n¢ sin (m2x
). (10)

Applying Green's theorem, HR(oFjoy) dx' dy = -~cFdx, to eqn (7) yields the following
integral expressions:

where

Fk(x, ¢) = - J:h(x, s) ds (k = 0, 1,2)

(1la)

(11 b)

and C is the boundary enclosing the domain R.
The line integral is positive when it is evaluated in an anti-clockwise direction.
The load coefficients can now be evaluated by performing a line integral around the

base perimeter as follows:

Pmn = ~n fc Fo(x, ¢) dx (m = 1, 2, 3 ... , n = 0)

= ~nfc F i (x,¢) dx (m,n = 1,2,3, )

P~n = ~n fc F2 (x, ¢) dx (m,n = 1,2,3, ). (12a--e)
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When the external loads and moments are applied through an attachment to the shell, the
force transmitted to the shell will not be uniformly distributed over the loaded area as a
result of different structural rigidities between the attachment and the shell. However, in
most design practices, it is customary to ignore the rigidity of the attachment in order to
simplify a design procedure. Such a design simplification is equivalent to saying that the
shell is able to deform freely under the applied loads. In this case, the force on the shell will
be linearly distributed over the base of the attachment, as can be expressed by

(13)

With the above load distribution, the functions Fk(x, ¢), k = 0, I, 2, can be evaluated as
follows:

r<t> . (mnx)Fo(x, ¢) = - Jo Pr(x, s) sm L ds

r<t> (mnx)F1(x,¢) = - Jo Pr(x,s)cos(ns) sin L ds

I (mnx)= - n2 [(qo +qlx)n sin n¢ +q2(COS n¢+n¢ sinn¢ -I)] sin L

(l4a)

(l4b)

F2(x,¢) = - J: Pr(x,s) sin(ns) sin (m;x)dS

= - nl2 [(qo + q[x)n(l-cos n¢) +q2 (sin n¢ - n¢ cos n¢)] sin (m;x). (l4c)

We are now in a position to evaluate the load coefficients Pmn and P~m using eqns (l2a--e).
For a circular or elliptical base profile, the base profile can be expressed mathematically.

In this case, eqns (12) can be evaluated directly without discretization of the boundary
curve. The boundary coordinates for an elliptical load located at (xo, ¢o), with a major axis
"2a" and minor axis "2b", can be expressed as follows:

x = acos8+xo, ¢ = (~)sin8+¢o; [0,2n]E8. (ISa)

The line integral over the range [0, 2n] can be mapped into the range [- I, I] by the following
transformations:

8=n(l+s), dx= -(ansin8)ds; [-I,I]Es. (lSb)

The circular shaped base with a radius "c" is a special case of the elliptical base by setting
c = a = b. It is either impossible or not easy to evaluate eqns (12) directly if the base profile
is a general shape made up of a series of straight and curve line segments, such as some of
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Fig. 2. Base profiles approximated by line segments.

the shapes shown in Fig. 2. In this case, the contour integral must be carried out along each
line segment in order to obtain the total integral result. The load coefficients can be rewritten
as follows:

Pmn = _1IfI Fo(x, ¢) ds (m = 1,2,3, ... ,n = 0)
Ln I -I

2 NSfl
=-L L FI(x,¢)ds (m,n = 1,2,3, ...)

n I -I

P'mn = L
2 If I F2(x,¢)ds (m,n = 1,2,3, ...),
n I -I

(16a-e)

where NS is the number of segments around the base profile.
The line segment joining points (x I, ¢I) and (X2' ¢2), as shown in Fig. 2, can be mapped

into the interval sE [ - 1, 1] through the following transformations:

x = H(xi +xJ + (X2 -XI )s]

¢ = H(¢I +¢2)+ (¢2 -¢ds]

dx = ~(X2 -XI) ds. (17)

Similarly, a curve segment joining three points (x], ¢d, (X2, ¢2) and (X3, ¢3), as shown in
Fig. 2, can be mapped into the interval s E [-1, 1] through the following transformations:

X = H2x2 + (X3 -xl)s+ (XI -2X2 +X3)S2]

¢ = H2¢2 +(¢3 -¢ds+(¢1 -2¢2 +¢3)S2]

dx = [~(X3 -XI) + (X3 -2X2 +XI)S] ds. (18)

Integral expressions of eqns (12) and (16) can be evaluated by the Clenshaw-Curtis (1993)
quadrature rule. This method approximates the integrand by Chebyshev polynomials on
the interval [-1, 1]. Each polynomial is then integrated exactly. The method is numerically
stable to a high degree and is comparable in accuracy to that by an equivalent Gaussian
rule. It can be shown that it is exact for polynomials of degree N or less. The most attractive
feature of this method is that it is completely self-contained, requiring no tabulated values
for quadrature weights and points. Any degree of approximation can be obtained and
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checked for its accuracy. The method has been found to be successful for a wide range of
integrals because the Chebyshev series approximation is very good in the interval [-1, 1].

The Clenshaw-Curtis quadrature rule can be expressed as follows:

1= f/(S)dS
4 N ( nk) N 1 njk/.'1= -- L"f cos- L"-.2-·cos- (j=0,2,4, ... ;eventermsonly),
N k~O N j=O J - I N

(19)

where IN is the N-term approximation of the integral; the double prime" indicates that the
first and last terms of the series are to be halved.

It has to be mentioned here that although the sine and cosine functions exhibit highly
oscillatory behaviour, which leaves only the very high order quadrature methods with any
chance of success, no such difficulty is encountered in the present work. The degree of
oscillation may be high with respect to the entire region of the shell surface, but it is
definitely low over the loaded area. For this reason, there is no numerical instability
associated with integration of the sine and cosine functions. It has been found that the 10­
20-term approximation used in eqn (l9) would give sufficient accuracy for most loading
cases.

If the function f(x) in eqn (lIb) cannot be integrated analytically in the case of a
complex load distribution function P,(x, ¢), a numerical integration method can be
employed to evaluate the double integrals of eqn (7). For a base profile consisting of a
series of straight line segments, as shown in Fig. 3, the result of the integral is the sum of
projected areas under all line segments, which takes into account the sign of the integration.
The projected area under each line segment is a trapezoidal shape which can be transformed
into the square domain [(, 1]], as shown in Fig. 3. The transformation is necessary if a
standard numerical quadrature integration rule is to be used. The load coefficients are then
expressed as follows:

I NSfl fl
Pmn = Ln~ _I _/o(x'¢)'det(J)'d('d1] (m = 1,2,3, ... ,n = 0) (20a)

(m, n = 1,2,3, ...) (20b)

(m,n = 1,2,3, ...), (20c)

where det(J) is the Jacobian determinant for the transformation from (x, ¢) to «(,1]).

x

1ih2
1=tr

~Pin~Ofd~main :.

2'l' axial direction
Fig. 3. Mapping of a domain for integration.
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Functions fk(x, cP) in eqns (20) can be mapped into f(', Y/) through the following
transformations:

x = H(x] +X2) + (X2 -xd'J

cP = ~(l +t/)[(cP\ +CP2)+(CP2 -cPd'J

det (J) = ~(X2 -x\)[(cP] +cp2)+(cp2 -cP\m· (21)

3. RELATIONSHIP BETWEEN APPLIED LOADS AND LOAD DISTRIBUTION FUNCTION

In order to derive a simple relationship between loads applied on the attachment and
its resulting force distribution on the shell surface, it is assumed here that the shell is free
to deform under load. In other words, the structural rigidity of the attachment will not be
considered. In reality, the force distribution on the shell due to external loads acting on a
rigid attachment will never be uniformly distributed over the base of the attachment. A
high concentration of forces will occur around the edges of the attachment. Nevertheless,
local thickening or reinforcement of the shell at the structural junctions will also alleviate
the stress concentration due to the structural discontinuity.

If the structural rigidity of the attachment is neglected, then the force on the cylindrical
shell will follow the nominal bending stress pattern of the attachment at its base. This
simplifying assumption has been adopted by most pressure vessel design codes as a basis
for dealing with the local loading problems. For example, the reaction force distribution
on the shell surface due to an applied moment on a rectangular attachment is always
assumed to vary linearly across the base of the attachment. This implies that the attachment
is very flexible and it does not impose restraint on the shell displacements. In recognizing
the fact that local stress concentrations do exist at the structural junctions, desgin codes
usually specify allowable stress limits on the stresses calculated based on the flexible
attachment's assumption.

For an attachment of arbitrary shaped base, the sectional properties such as the
centroid and the moments of areas can be determined. The nominal force distribution at
the base of the attachment can then be found by the engineer's beam theory. In the
following, the force distributions at the base of two attachments, one with a rectangular
base and the other with an elliptical base, will be derived when they are subjected to
combined external loads consisting of a direct load P, an axial moment M L and a cir­
cumferential moment Me.

(a) Rectangular base profile with centroid located at (xo, cPo) :

I 4 3 J 4 3
U = Jac, v = 3a c,

P (3ML ) (3MJ)Pr(x,cP) = -4 + - (x-xo)+ -~ (cP-cPo).
ac 4a3 c 4ac3

(b) Elliptical base profile with centroid located at (xo, cPo) :

(22)

(23)

Load distribution for attachments with other base profiles can be determined in a similar
manner. For a base area having no axis of symmetry, as in a case of an "L"-shaped
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attachment, it is necessary to use the general beam bending theory applicable to an unsym­
metrical section to find the load distribution function.

4. VERIFICATION OF THE PRESENT APPROACH

The discrete Fourier approximation method has been adopted by Tooth et al. (1989)
to evaluate Fourier coefficients associated with thermal loadings on a cylindrical shell. They
compared their theoretical results with the finite element method and very good agreement
was obtained between the two. The discrete Fourier approximation method is thus a
very reliable and accurate method for evaluating Fourier load coefficients. However, as
mentioned before, this method requires a great deal of computational effort and data
management and is thus not the preferred choice. The following section will therefore focus
on the verification of Method II-the contour line integral method.

In order to validate the contour line integral method for evaluating Fourier load
coefficients, a comparison ofcomputed results with those of Nash et al. (1991) for a circular
base profile is presented here. Nash et al. (1991) evaluated the load coefficients for the
circular patch by direct integration involving variable integral limits. Such an approach is
feasible only when the shape is well defined, such as a circle or an ellipse. The method
becomes difficult or impossible for a general shape.

The cylindrical shell has a mean radius r = 28 in, thickness t = 1.3 in and length
L = 71 in; the circular attachment has a mean radius c = 5.4375 in. The Young's modulus
E = 30 X 106 Ib in. -2 and Poisson's ratio v = 0.3. The shell is subjected to three separate
load cases: a radial load of 94,900 Ib, a circumferential moment of 410,000 in-Ib and an
axial moment of 410,000 in-lb.

A comparison between the present approach and that of Nash et al. (1991) is given in
Table 1. In the case of the circular patch load, the results are computed at the centre of the
patch; for the applied moments, the results are computed at the edge of the patch. It can
be seen that very good agreement is found.

Also shown in Table 1 are the results for an equivalent square base. The concept of an
equivalent base has been adopted by most pressure vessel design codes to convert circular
and elliptical base profiles to a standard rectangular or square shape for which tabulated
results are available. Herein, the half-width of the equivalent square is taken as 0.876r,
obtained from Timoshenko and Woinowsky-Krieger (1981) on the basis of an equal
centroidal stress value between circular and square patch loads applied on a simply sup­
ported plate. Table 1 shows that the equivalent square concept gives good agreement for
the radial load case; however, for applied moments, more than 10% error on stresses is
incurred.

Table I. Comparison of results for loads on a circular base (r = 28 in, t = 1.3 in, L = 71 in. c = 5.4375 in)

Radial patch (1., a"
(P = 94,900 Ib) NArfP) N~(rfP) MJP M./P (psi) (psi)

Nash et al. (1991) -2.924 -3.353 0.064 0.088 -29329 - 38474
Equivalent square -2.921 -2.947 0.062 0.087 -28659 -37241
Present -2.915 -2.963 0.062 0.087 -28533 -37213

Cir. moment
(M, = 410,000 in-lb) NxCcrfM,) N~(cr/MJ Mx(c/MJ M¢(cIM,) (Jx a¢

------

Nash et al. (1991) -1.560 -0.998 0.067 0.102 -21065 -29294
Equivalent square -1.393 -0.764 0.057 0.104 -18266 -29573
Present -1.542 -0.989 0.067 0.102 -20821 -28900

Axial moment
(ML = 410,000 in-Ib) N,(crfMd N~(cr/ML) M,(cfMLl M¢(cIMLl ax a~

Nash et at. (1991) -0.965 2.871 0.068 0.056 -20147 -20977
Equivalent square -0.866 2.695 0.070 0.046 -20443 -17986
Present -0.963 2.584 0.065 0.055 -19341 -20148
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Table 2. Convergence of numerical integration for a circular patch load
(r = 28 in, t = 1.3 in, L = 71 in, C = 5.4375 in)

Quadrature
points N,(r/P) N¢(r/P) Mx/P M¢/P

10 -2.915 -2.907 0.054 0.085
20 -2.915 -2.963 0.061 0.087
50 -2.915 -2.963 0.062 0.087
100 -2.915 -2.963 0.062 0.087
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The contour line integral method is also validated against eqn (8) for a rectangular
patch under uniform pressure qQ. In this case, perfect agreement is attained. However, the
contour line method requires greater computation time compared to direct use of eqn (8)
because for each Fourier coefficient, four line integrations have to be performed.

Perhaps the greatest advantage of the contour line integral method is that it can handle
complex shape and complex loading distribution systems readily with ease and without
further computational effort. For example, an attachment with an irregularly shaped base
is subject to load and moments simultaneously. For such a case, the discrete Fourier method
would require reformulation or modification of the programming codes.

One of the main concerns of the contour integral method is the reliability of the
numerical integration rule; for the present case, the Clenshaw-Curtis quadrature rule. To
show the convergence of integral results, the circular patch is used here as a case example.
As the circle has an analytical expression, there is no requirement to partition the circular
boundary into several segments for the purpose of integration. The integration limits [0, 2n]
are transformed into [-I, I] using eqn (IS). Table 2 shows the convergence of the integral
results. It is seen that for the present example, 25 integration points around the circle are
enough for an accurate result.

The same circular patch is used again to validate the curve line segment. The boundary
of the circle is modelled by two, four and eight curve segments, respectively. The results are
given in Table 3. It can be inferred from the results that at least four curve line segments
must be used to model a complete circular boundary. When only two curve segments are
used, nearly 10% errors in the results are incurred. This verification example thus validates
the use and limitation of the curve line segment.

Provision of straight and curve segments permits modelling of a complex base profile
with ease. As mapping is performed on each line segment individually, the contour line
integral method can handle profiles with concave and convex corners. In fact, any advantage
derived from the line integral principle will be applicable here. For example, in the case of
a base with internal holes, artificial lines can be constructed to connect external and internal
regions and the line integral can be carried out over contours of all regions.

5. CONCLUSIONS

The problem of a cylindrical shell subject to local loads with an arbitrary base profile
has been studied in this article. Solutions for stresses and displacements are derived and
expressed by double Fourier series. Two general methods are studied to evaluate the Fourier
load coefficients for loads with an arbitrary shaped base. The first is the discrete Fourier
approximation method, which requires much computational effort and data management

Table 3. Validation of curve line segment for a circular base (r = 28 in, t = 1.3 in,
L = 71 in, C = 5.4375 in)

No. of curve (Jx (J¢
segments (NS) N,(r/P) N.(r/P) Mx/P M./P (psi) (psi)

2 -2.524 -3.353 0.058 0.079 -26317 -33686
4 -2.886 -2.938 0.062 0.087 -28367 -36972
8 -2.913 -2.962 0.062 0.087 -28522 -37197
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on the computer; it is not a preferred choice. The second is the boundary line integral
method, which is simpler to implement on the computer and which can handle complex
boundary profile and loading distribution with ease. A few numerical examples show that
the boundary integral method is accurate and versatile.
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